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* Example: Solve a boundary value problem

Au=0,x€e 0

u(a) = g(x), x € 50

59

* PINN Solution: Train a neural net à with domain £) and loss

/ Aioodo + | (à() — g(x))? dz
9 692
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* Example: Solve a boundary value problem

Au=0, xe

u(x) = g(x), « E 60

502

* PINN Solution: Train a neural net ii with domain £) and loss

a Ag É
a > si + “e >S(iy) gl)?

i=1 =]
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TOPGA Semin...

* Neural networks approximate functions (and derivatives) arbitrarily

well

* These are approximately solutions to the PDE

* Evaluate derivatives efficiently with autograd implementation

* Train the network to approximate the boundary and solve PDE

João M Pe



* Example: Solve a boundary value problem with unknown parameter q

Au=au, x EQ

u(a) = g(x), x € 60

ul) = h(x), ve C “a

* PINN Solution: Train a neural net à with domain (), parameter a and loss

q

de So a(ã (ala) - a(o)? + ES (au) = atu)? + PES (útes) — (e)?
i=1 i=l

vp EQ Ys E 69 1 c
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* Main papers

1. Amethod for learning Partial Differential Equations

with A. Hasan, R. Ravier, S. Farsiu and V. Tarokh

2. Amethod for learning latent Stochastic Differential Equations

with A. Hasan, S. Farsiu and V. Tarokh

* Extras (work in progress, time permitting)

* Neural Conjugate Flows — a causal and time-reversible architecture

for Ordinary Differential Equations

with A. Bizzi, L. Nissenbaum

* PINNS for seismic inversion (project with Petrobras)

with several students and postdocs at IMPA



(IT a

Given: Goals:
* Noisy data points of a function * Obtain an approximation of the function;

* Function is the solution to a PDE or * Learn the underlying PDE/ODE
ODE

150

100 us Pae Nam | O
a

50

+ LT mp Na | + Pac —H Na
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* PDEs are usually linear combinations of simple derivative terms

* Examples

Um — U =Wave equation (1D) tt oo 0

Us — Ugxa — O
Heat equation (1D) t um

Helmholtz Equation (2D) Uxa + Uyy +u=0

Inviscid Burgers equation Us + UU = 0

Korteweg-de Vries equation Ut — Guus + Uzar = 0
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fofo ST E

* The user defines a dictionary of possible derivative terms

* Assume the PDE is a linear combination of these terms

User defined

| | | | | dictionary
au +azuzy +azuuz + AqUrre +Hasu, =0

Edo do dl | emas
coefficients

* Example: Heat Equation

lugar +(— Du =

PINNs for Inve
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* The user defines a dictionary of possible derivative terms

* Assume the PDE is a linear combination of these terms

User defined

| | | | | dictionary
au +azuzy +azuuz + AQUrre Hasu, =0

[dl Mt = | Learn linear
coefficients

* Example: Korteweg-de Vries equation

—Cuuz+ Vugra+t(— Dus =0
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* Sample random points in domain p1,...,PK

* Ifuisa solution of the PDE

aqu + AQUrr + aguuy + Algar + asus =

* Forall pi,...,PK

aru(pr) + azuza(pr) + asu(pr ua(pr) Fasuaze(Pk) +asus(pr) =0

PINNs for Inverse Problems 9
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* In matrix form:

u(pi) Usalpi) ulpiua(pi) Usvslpi) (pi) | Ta

ulpr) Ure(pr) ulprJua(pr) Uece(pr) ulpr)| LO
l )

Mu(P)

* The vector a = (ay,a2,43,04,45) is in the null space of M.(p)
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In matrix form: Ma(p)a = 0

Null space vector is singular vector with singular value O

Obtain null space by finding singular vector with smallest singular value

Calculate smallest singular value using min-max principle

min [|Mu(p)alê

subjectto Ialo=1
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* Fitting the neural era à(:;0) to the data

Lao) = EHfu-a

* Learning the PDE

id; 99?

Lppe(9,a) = | Maç;g)(P) all

* Encourage law sparsity

Le(a) = Ijall:

PINNs fo iverse Problems

Fit the function at

sample points (i;, D;)

. Sample random points

. Evaluate dictionary terms

to build this matrix

- Calculate derivatives with

auto-differentiation

»



* Training

gn Ant Lae(0)(1 + AppeLppe(O,a) + AspLsp(a))

bj t t 
= 1 -

subject to Ia] TD Enforcedby
1. projecting gradient after back-propagation

2. rescaling after optimization step

* Additional feature:

* Minimizing Lppe(0,a) in terms of 0 enforces the neural network to be

a solution to learnt PDE

* Learnt function is smoother
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Helmholtz Equation (2D): Ura + Uyy Hu=0

Derivative dictionary: (tea Uyys Ux, Uy, Us u2, UUr, UUy)
(1, 1,0,0,1,0, 0, 0)

“ P

o “o

a

o do o so a o dO O cd E

Original function Noisy function values Output of the neural

(Solution to PDE) (Input/Training Data) network

PDE coefficient error: 3.6 x 1072

(fo E a
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Input

João M Pereira
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* Stochastic differential equation

dZ — u(Ze)dt + o(Z)dW;

LN
Drift coefficient Diffusion coefficient

(Deterministic) (Stochastic)
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* SupposeZ, is a solution of the SDE

dZ, =— u(Ze) dt =|ja o(Z)dW,

Y = 9(Z4) is a solution of other SDE

dY, = MY odt + S(Y)dW,

* Then

e a

* The formula fo!” q in terms bt 4 is given by Itô's lemma
João PINNSs for Inverse Problems



Xj= (24) + €&

dZ+ — (Ze) dt + o(Z)dW,

Y =9(Z) f=fog

X, = fr) + €

dY, = W(Yo)dt + o(Y)dW;

João M Pereira PINNs for Inverse Problems 9



X, =— f(Ze) + Et

dZ, = m(Ze)dt + o(Z0)dW,

Can only learn f, uy, ouptoa

one-to-one transformation

in latent space (9)

X= (Ye) + €

dY = MY dt + o(Yo)dW,

João M Pereira PINNSs for Inverse Problems 19



No need to learn diffusion coefficient É

(IT

Theorem (Informal)

Suppose that (f, u, 9) are the true underlying model parameters of

X = (Zi) + e

dZ; = (Zdt + o(Z)dW,

Then under some technical conditions of |t and O; there exists (f, Ê, 5) such that

Xi = HZ) E 6%

dZ; = Ze) dt + o(Z)dW:

and O is isotropic, that is, a(z) = Il foralz ER”

PINNs fc oblems
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Po(X, Z) = p(X ne Zer a) PulZer ne Zo)py(Xe| Ze) py( Ze).

= f(Z) +e

So
Zini — Zi = Nulo) At, Atl)

ZOS Xara = f(Zirat) + eat

João M Pereira PINNSs for Inverse Problems 21

Euler-Maruyama

Approximation



[e o dc E a

Po(X, Z) = p(XneZer a) Pl Zine Ze) py (Xe Ze) py( Ze).

pi(Xi| Zi) = p( Xe — f(Z6))

1 |Zira, — Zi — MZ) APpulZselZt) (Gran exp (- 2Af )

Z(0) pi(Xee)Zer nt) = P(X eras — f(Ze+st))
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* Decoder

Go(ZIX) = qu (Zip ne X tr se, Zi) Quo (Zi X4)

Ensures qy(Z|X) approximates po(Z|X) Maximizes the likelihood of po(X)

* Loss | |

Ló, 4) = Dx (ay (2X a (X) || po(ZIX)an(X)) — Ego (x [po (O),

= Ep (x) [Eqs(2]x) [log qu(Z|X) — log po(X, 2)]) .

João M Pereira PINNSs for Inverse Problems 22



Identifiability ]
ea

Theorem (Informal)

Suppose that the true generative model of X has true parameters (f*, u“, 9o).

Then, under several technical conditions, and in the limit of infinite data, the

proposed variational auto-encoder we obtain the true model up to an

isometry. That is, there exist a matrix Q € R”*” and a vector b E R” such that

the learnt parameters (f, ju, Y) and the true parameters (f*, u”, y”) are related

through:

f(zo)=f(Qz+b), VzeR?

u(z) = QTu'(Qz+b), VzeR”
pylz)=pye(Qz+b), VzeR”





* Variable time sampling frequency

* SDEs with time dependency

* Determining the latent dimension

* Cramér-Rao lower bounds for estimation error

João M Pereira PINNSs for Inverse Problems



* Consider an Ordinary Differential Equation

us =F(u), u(0)=uo ER”

* The flow operator has a semi-group structure:

Vuo = u(t)

Vouo = UM

VW, = Vips, Vt,s >0

* Some ODESs are also reversible

* That happens when the flow operator has a group structure vt, se R

João M Pereir: verse Problems 26



fofo ST Ea

* Our architecture includes this group structure by design! e .
Bijective Invertible

t —1 t AE function learnt by

& — H o W o H a neural network

ad Flow operator with
analytic solution

Harmonic Oscillator

João M Ns for Inverse Problems 27



TCOPGA Semin...

* Ifwe know the topology of the equation, we can incorporate that

knowledge directly to the architecture

* If we do not know the topology of the equation, we can always “destroy

the topology”: allows us to solve any ODE problem

* We show that our neural network is an Universal Approximator for any

solution of an ODE.
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* Extrapolation Power

Lotka-Volterra, PINN Lotka-Volterra, Conjugate
30

— Ground Trutn Groundruth
— Greuna Truth 18 Ground

INN ' Nosso ul
25 PINNY Nosso u2 ||

15

12

os |

06

João M Pereira PINNSs for Inverse Problems 29



fofo E a

Centro Pi
==

crer. ah [ld PETROBRAS
e Inovação IMPA

Team:

J.M.P+L. Nissenbaum

1 Master student

5 Ph.D students

2 Postdocs
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* Equations

)

u(x,0) = uol). xe Q
nitial conditionsw(x,0) = (x), x € Q Sê val cond

)J=u
s(z z, b), ZE S,t e [0,7] «— Seismogram

Measurements

* Unknowns u(x, t) a(x)

João M Pereira PINNSs for Inverse Problems 32



Papers:

A, Hasan, J. M.P, R. Ravier, S. Farsiu and V. Tarokh

Learning partial differential equations from data using neural networks

ICASSP 2020, pp. 3962-3966, 2020.

A, Hasan, J. M.P,S. Farsiu and V. Tarokh

Identifying Latent Stochastic Differential Equations with Variational Auto-Encoders

IEEE Transactions of Signal Processing, 2020.

A, Bizzi, L. Nissenbaum, J. M. P,

Neural Conjugate Flows: a Physics-Informed Architecture with Differential Flow Structure

In Preparation

Code: | https://github.com/alluly/pde-estimation

https://github.com/alluly/ident-latent-sde
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