References
-
F. Chevallier, J. Morcrette, F. Chéruy, and N. A. Scott, “Use of a neural-network-based long-wave radiative-transfer scheme in the ECMWF atmospheric model,” Quart J Royal Meteoro Soc, vol. 126, no. 563, pp. 761–776, Jan. 2000. https://doi.org/10.1002/qj.49712656318
-
V. M. Krasnopolsky and M. S. Fox-Rabinovitz, “A new synergetic paradigm in environmental numerical modeling: Hybrid models combining deterministic and machine learning components,” Ecological Modelling, vol. 191, no. 1, pp. 5–18, Jan. 2006. https://www.sciencedirect.com/science/article/pii/S0304380005003455
-
M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational physics, vol. 378, pp. 686–707, 2019. https://www.sciencedirect.com/science/article/pii/S0021999118307125
-
S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, “Scientific Machine Learning Through Physics- Informed Neural Networks: Where we are and What’s Next,” arXiv preprint arXiv:2201.05624, 2022. https://arxiv.org/abs/2201.05624
-
J. Burkardt, “Investigating Uncertain Parameters in the Burgers Equation,” Mathematics Department, Ajou University, Suwon, Korea, 2013. https://people.sc.fsu.edu/~jburkardt/presentations/burgers_2013_ajou.pdf
-
W. Koehrsen, “Overfitting vs. underfitting: A complete example,” Towards Data Science, vol. 405, 2018. http://www.pstu.ac.bd/files/materials/1566949131.pdf
-
S. Xu, Z. Sun, R. Huang, G. Dilong, G. Yang, and S. Ju, “A practical approach to flow field reconstruction with sparse or incomplete data through physics informed neural network,” Acta Mechanica Sinica, vol. 39, Nov. 2022. https://doi.org/10.1007/s10409-022-22302-x